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ProblemProblem

 Clustering data sets that have local proximity
structure

Technique:

•Spectral clustering
•Constraint incorporation

  Must-link constraints
  Two points belonging to the same

cluster
        Cannot-link constraints

        Two points belonging to different
clusters

Local proximity structure:
Locally, the points belong to the same cluster as

their closest neighbors
Globally, the sub-clusters belonging to the same

cluster might be spatially separated by the
sub-clusters from other clusters

Example:

Spectral clusteringSpectral clustering
    (1) Start from n by n similarity matrix A

   (2) Normalize similarity matrix

    (3) Compute the eigenvectors of the similarity
    matrix

    (4) Clustering in the space spanned by the
largest k
         eigenvectors

Motivation
    Minimize cut value :

Parameter selectionParameter selection

• Select a sigma parameter such that the inter-cluster
similarities are approximately 0

• Estimate the local neighborhood

• For each point, compute the distances to all other
points

• Sort this distance array

• Find m such that distances                          have largest
gap

• Find the smallest m among all the points

• Set

• The first m items in the sorted distance array
correspond to the largest sub-cluster that we guarantee
to walk over in our random walk model

• Each point will have similarity value >        for its m
closest neighbors, and near-0 similarity values for points
farther than its mth closest neighbor

• m = 9 for the XOR data set

Parameter issuesParameter issues

The conditions that guarantee a piecewise constant
eigenvector:

This condition implies that for each point i, the sum of
its similarity value with intra-cluster points and inter-
cluster points must be a constant.

In other words, for each pair of clusters S and S’, there
exists a constant K which is the sum of the similarity
value between any point in S with any point in S’, and
vice versa.
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The algorithmsThe algorithms

• CSC :  (1) uses normalization (a)

      (2) For must-link constraint, set A(i,j)=1

      (3) For cannot-link constraint, set A(i, j)=0

      (4) Compute the P matrix and its eigenvectors

      (5) Clustering in the space spanned by P’s
eigenvectors

• KKM [1] : similar to CSC, but uses normalization (c)

• CCL [2] : Constrained Complete Linkage method

       (1) Impose must-link constraint, set distance(i, j) = 0

       (2) Propagate must-link constraint by running all-
pairs-

 shortest-path and get new distance metric

   (3) Impose cannot-link constraint, set

 distance(i, j)=infinity

       (4) Run complete-linkage program

Results:

Results on Soybean_small data set. 47
instances, 35 attributes, and 4 clusters.

Results on Iris data set.  150
instances, 4 attributes, 3 clusters.

SolutionSolution

• Actively select constraints that represent each sub-
cluster

• Incorporate constraints

• Results: improved agreement with labels
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ConclusionsConclusions

• The eigenvectors of the P matrix will help us find each
sub-cluster

• Incorporating these constraints will result in piecewise
constant eigenvectors that can yield the correct partition for
data sets that obey local proximity structure

• The sigma parameter will influence the result; we provide
a parameter selection heuristic to solve this problem
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Different criteria
      to balance the cut value and the cluster size

    Ratio cut
   Normalized cut

Understanding the eigenvector
Similar points will have similar values in the eigenvector

 If k clusters are well separated, the eigenvector will be 
piecewise constant, i.e., the points in the same 
cluster will have the same values while points in 
different clusters will have different values

 If k clusters are not well separated, the eigenvectors will
be approximately piecewise constant

Left: The 2-dimensional plot of Soybean_small
data set, which is generated using the multi-
dimensional scaling method. There is a small
group of square points that is separated from the
other square points by elements of the triangle
cluster. The overlap between these two clusters
will cause problem when the constraints are
propagated.

Example: one item (left, with black circle around it) and its plot of
sorted distance array (right). The red circle indicates the m-
neighborhood of this item.

The 2nd largest eigenvector
derived by P matrix, m=9.

The 2nd largest eigenvector
derived by P matrix with
must-link constraint (1, 21),
m=9.

The 2nd largest
eigenvector derived by P
with the same 2 must-link
constraints, m=3

The 2nd largest eigenvector
derived by P with the same
2 must-link constraints,
m=14

The 2nd largest eigenvector derived
by P matrix with 2 must-link
constraints (1, 21) and (11, 31), m=9.

XOR data
set


